BLY91A V.H.F. POWER TRANSISTOR

N-P-N epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 28 V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions. It has a $\frac{1}{4}$ " capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA									
R.F. perfe	orman	ce up to			n an unno	eutrali	ised c	ommon-em	itter
Mode of operation	V _{CC} (V)	f (MHz)	P _S (W)			G _p (dB)	η (%)	$\overline{z_i}$ (Ω)	YL (mA/V)
c.w.	28	175	< 0.50	8	< 0.44	> 12	>65	1.8+j0.7	18-j20

MECHANICAL DATA

Dimensions in mm

SOT -48

Torque on nut: min. 7.5 kg cm
(0.75 Newton metres)
max. 8.5 kg cm
(0.85 Newton metres)

Diameter of clearance hole in heatsink: max. 4.17 mm

Mounting hole to have no burrs at either end De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required, an adhesive instead of a lock washer is preferred.

Temperatures

Storage temperature	$T_{\mathbf{stg}}$	-30 to	+200	°C
Operating junction temperature	$T_{\mathbf{j}}$	max.	200	°C

THERMAL RESISTANCE

From junction to mounting base	R _{th j-mb}	=	9.4	°C/W
From mounting base to heatsink	R _{th} mb-h	=	0.6	oC/W

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

peak value	VCBOM	max.	65	V	
Collector-emitter voltage (open base)	v_{CEO}	max.	36	V	
Emitter-base voltage (open collector)	v_{EBO}	max.	4	V	
Currents					
Collector current (average)	I _{C(AV)}	max.	0.75	Α	
Collector current (peak value) f $\geq 1 \text{ MHz}$	I_{CM}	max.	2.25	A	2
Power dissipation					

CHARACTERISTICS

f > 1 MHz

T_i = 25 ^oC unless otherwise specified

max.

Ptot

V(BR)EBO

hFE

fT

Ccs

17.5

V

5

500

10 15

2

pF

MHz

Collector cut-off current

Collector-base voltage (open emitter)

Total power dissipation up to T_b = 25 °C

$I_B = 0$; $V_{CE} = 28 \text{ V}$	ICEO	<	5	mA
1B = 0, VCE - 20 V	'CEO		3	ши

Breakdown voltages

Collector-base voltage open emitter; IC = 1 mA	V(BR)CBO	>	65	V
Collector-emitter voltage open base, $I_C = 10 \text{ mA}$	V _(BR) CEO	>	36	V

Transient energy

Emitter-base voltage

open collector; IE = 1 mA

L = 25 mH; f = 50 Hz open base E > 0.5 mWs
$$-V_{BE} = 1.5 \text{ V}; R_{BE} = 33 \Omega \text{ E} > 0.5 \text{ mWs}$$

D.C. current gain

$$I_C = 500 \text{ mA}$$
; $V_{CE} = 5 \text{ V}$

 $I_C = 400 \text{ mA}$; $V_{CE} = 20 \text{ V}$

Transition frequency

Collector	capacitance at f = 1 MHz	
In = I-	= 0. Vap = 30 V	C-

Feedback capacitance at f = 1 MHz

Collector-stud capacitance

							-
I_C = 50 mA; V_{CE} = 30 V		30	$v_{CE} =$	mA;	= 50	$I_{\mathbf{C}}$	

C_{re}	typ.	7.5	pF

typ.